Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(5): 165, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592368

RESUMO

Soil pollution around Pb-Zn smelters has attracted widespread attention around the world. In this study, we compiled a database of eight potentially toxic elements (PTEs) Pb, Zn, Cd, As, Cr, Ni, Cu, and Mn in the soil of Pb-Zn smelting areas by screening the published research papers from 2000 to 2023. The pollution assessment and risk screening of eight PTEs were carried out by geo-accumulation index (Igeo), potential ecological risk index (PERI) and health risk assessment model, and Monte Carlo simulation employed to further evaluate the probabilistic health risks. The results suggested that the mean values of the eight PTEs all exceeded the corresponding values in the upper crust, and more than 60% of the study sites had serious Pb and Cd pollution (Igeo > 4), with Brazil, Belgium, China, France and Slovenia having higher levels of pollution than other regions. Besides, PTEs in smelting area caused serious ecological risk (PERI = 10912.12), in which Cd was the main contributor to PREI (86.02%). The average hazard index (HI) of the eight PTEs for adults and children was 7.19 and 9.73, respectively, and the average value of total carcinogenic risk (TCR) was 4.20 × 10-3 and 8.05 × 10-4, respectively. Pb and As are the main contributors to non-carcinogenic risk, while Cu and As are the main contributors to carcinogenic risk. The probability of non-carcinogenic risk in adults and children was 84.05% and 97.57%, while carcinogenic risk was 92.56% and 79.73%, respectively. In summary, there are high ecological and health risks of PTEs in the soil of Pb-Zn smelting areas, and Pb, Cd, As and Cu are the key elements that cause contamination and risk, which need to be paid attention to and controlled. This study is expected to provide guidance for soil remediation in Pb-Zn smelting areas.


Assuntos
Cádmio , Chumbo , Adulto , Criança , Humanos , Chumbo/toxicidade , Carcinogênese , Carcinógenos , Poluição Ambiental , Probabilidade , Medição de Risco , Solo , Zinco
2.
Int J Biol Macromol ; 262(Pt 2): 130181, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360240

RESUMO

Poly(butylene diglycolate-co-furandicarboxylate) (PBDF) is a newly developed biodegradable copolyester. Candida antarctica lipase B (CALB) has been identified as an effective catalyst for PBDF degradation. The mechanism is elucidated using a combination of molecular dynamics simulations and quantum chemistry approaches. The findings unveil a four-step catalytic reaction pathway. Furthermore, bond analysis, charge and interaction analysis are conducted to gain a more comprehensive understanding of the PBDF degradation process. Additionally, through the introduction of single-point mutations to crucial residues in CALB's active sites, two mutants, T138I and D134I, are discovered to exhibit improved catalytic efficiency. These significant findings contribute to the advancement of our comprehension concerning the molecular mechanism of underlying copolyesters degradation, while also presenting a novel approach for expediting the degradation rate by the CALB enzyme modification.


Assuntos
Proteínas Fúngicas , Lipase , Lipase/química , Proteínas Fúngicas/química , Simulação de Dinâmica Molecular , Domínio Catalítico
3.
Int J Biol Macromol ; 242(Pt 2): 124756, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178891

RESUMO

Hemoglobin is essential for carrying oxygen (O2) in the blood. However, its ability to bind excessively to carbon monoxide (CO) makes it susceptible to CO poisoning. To reduce the risk of CO poisoning, Cr-based heme and Ru-based heme were selected from among many transition metal-based hemes based on their characteristics of adsorption conformation, binding intensity, spin multiplicity, and electronic properties. The results showed that hemoglobin modified by Cr-based heme and Ru-based heme had strong anti-CO poisoning abilities. The Cr-based heme and Ru-based heme exhibited much stronger affinity for O2 (-190.67 kJ/mol and -143.18 kJ/mol, respectively) than Fe-based heme (-44.60 kJ/mol). Moreover, Cr-based heme and Ru-based heme exhibited much weaker affinity for CO (-121.50 kJ/mol and -120.88 kJ/mol, respectively) than their affinity for O2, suggesting that they were less likely to cause CO poisoning. The electronic structure analysis also supported this conclusion. Additionally, molecular dynamics analysis showed that hemoglobin modified by Cr-based heme and Ru-based heme was stable. Our findings offer a novel and effective strategy for enhancing the reconstructed hemoglobin's ability to bind O2 and reduce its potential for CO poisoning.


Assuntos
Antitoxinas , Rutênio , Cromo/toxicidade , Hemoglobinas , Oxigênio/química , Heme/química , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo
4.
J Phys Chem B ; 127(4): 1039-1049, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36662499

RESUMO

Charge trapping and transport over chemical defects in polyethylene have significant impacts on its electrical and dielectric properties. However, the dynamics of this phenomenon and its underlying mechanisms remain unclear. To understand this fundamental aspect, we conducted a time-domain ab initio nonadiabatic molecular dynamics study of phonon-assisted holes dynamics in polyethylene over C═O and C-OH defect states. Our results suggest that the hole transfer and energy fluctuations substantially depend on temperature and local morphology. When the temperature decreases from 300 to 100 K, the hole transfer efficiency and the energy fluctuations are severely suppressed due to the weakened interactions between holes and phonons. Furthermore, amorphous polyethylene exhibits a severe suppression of the hole transfer process compared to crystalline polyethylene. An explanation for the influence of morphology on the hole transfer process can be found in the differences in the hole-phonon coupling and the electronic coupling between two chemical defect states in crystalline and amorphous polyethylene. Advancing the fundamental understanding of the dynamics of hole transfer over chemical effects in polymers is a key to improving their insulating properties for the next-generation high-voltage cables.

5.
Ecotoxicol Environ Saf ; 244: 114035, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36058162

RESUMO

Coagulation is an effective preliminary treatment process for textile wastewater. In order to evaluate the effectiveness of the coagulation process, we performed quantitative structure activity relationship (QSAR) analyses with total organic carbon (TOC) removal rates (Rexp) as an index by three different coagulants (AlCl3, FeCl3, and MgCl2). The experimental results showed that the average Rexp of the three coagulants was 39.12% ± 2.60%, 51.60% ± 2.88%, and 49.95% ± 3.17%. Subsequently, 42 molecular descriptors of dye molecules were calculated by quantitative calculation softwares Gaussian 09, Material Studio 7.0, and Multiwfn 3.7, and then QSAR models were constructed by a multiple linear regression (MLR) method for the three coagulation systems. The developed QSAR models demonstrated excellent stability, robustness, and predictability with values of R2 = 0.7677, 0.8015, and 0.7035, Q2INT = 0.6067, 0.7026, and 0.5898, Q2EXT = 0.5505, 0.5076, and 0.5697, respectively. Based on the analysis of quantum parameters, the coagulation mechanism for AlCl3, FeCl3 is primarily electrostatic adsorption as well as hydrogen bonding, while MgCl2 coagulates dyes mainly by electrostatic adsorption. This study provides an assessment of the removal rules and a feasible method for predicting dye removal rates in AlCl3, FeCl3, and MgCl2 coagulation process.


Assuntos
Relação Quantitativa Estrutura-Atividade , Águas Residuárias , Carbono , Corantes/química , Têxteis , Águas Residuárias/química
6.
J Hazard Mater ; 438: 129448, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35803185

RESUMO

QSAR modeling could be a promising tool for guiding the development of novel and cost-effective environmental technologies. As an example, it could be widely used to analyze the degradation rules of organic pollutants in various decomposition methods. However, a lack of systematic research on a particular removal method is significant in revealing the decomposition rule of pollutants more accurately and guiding industrial applications. In this study, six coagulation systems (MnO2/Fe(OH)3/AlCl3/FeCl3/CaCl2/MgCl2) were used as examples to remove 38 dyes under three pH conditions, and the characteristics and differences of these systems were explored by QSAR modeling. The results showed that the removal effect by MnO2 under acidic and neutral conditions and Fe(OH)3 under acidic conditions were quantitatively described mainly by bond order (BO) and Fukui index (f (+) and f (0)), which reflected that oxidative degradation dominated. In contrast, most of the critical parameters of other systems were molecular descriptors represented by ∑q(O) (the total charge of all the oxygen atoms in the molecule) and SAA (surface area of a molecule), which reflected that electrostatic adsorption and hydrogen-bond adsorption processes dominated.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Corantes/química , Compostos de Manganês , Óxidos , Relação Quantitativa Estrutura-Atividade , Poluentes Químicos da Água/química
7.
Ecotoxicol Environ Saf ; 240: 113693, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35653976

RESUMO

Coagulation is the most widely used method in the treatment of printing and dying wastewater. To better understand the relationship between the coagulation effect and dye molecular structures, quantitative structure activity relationship (QSAR) analyses were performed to elucidate the factors affecting the coagulation in ferric chloride (FeCl3) coagulation process. First, the coagulation experiments on 38 dye molecules were conducted to determine their color removal rates (Rexp) by FeCl3 under different pH conditions (i.e., pH = 4 and 10). The results showed that the average Rexp of dyes were 41.36% ± 2.40% at pH value of 4 and 55.70% ± 2.83% at pH value of 10. Subsequently, a multiple linear regression (MLR) method was used to construct QSAR models based on Rexp and 42 molecular parameters calculated by Gaussian 09, Materials Studio 7.0 and Multiwfn. The developed QSAR models exhibited excellent stability, reliability, and robustness with values of R2 = 0.7950, 0.8170, Q2INT = 0.6401, 0.7382, Q2EXT = 0.5168, 0.5441, at pH values of 4 and 10, respectively. Through analysis of quantum parameter values, electrostatic adsorption and hydrogen bonding adsorption were primarily responsible for the coagulation process. Therefore, this study could be useful in providing critical information for evaluating the removal efficiency and a feasible way to predict the removal rate of dyes by FeCl3 when no coagulation experiments were conducted.


Assuntos
Relação Quantitativa Estrutura-Atividade , Águas Residuárias , Adsorção , Corantes , Reprodutibilidade dos Testes , Águas Residuárias/química
8.
J Hazard Mater ; 430: 128269, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35158249

RESUMO

Iron-impregnated biochar-activated urea-hydrogen peroxide (FB-activated UHP) is a potential in-situ technology for simultaneously reducing soil sulfonamide antibiotic contaminants and improving soil fertility. To better understand the degradation of sulfonamide antibiotics by FB-activated UHP, a two-dimensional quantitative structure-activity relationship (2D-QSAR) model based on quantum chemical parameters and a three-dimensional QSAR (3D-QSAR) model based on molecular force field were developed to investigate the factors influencing the removal efficiencies (Re%). The optimal 2D-QSAR model was Re%= 0.858-8.930 E-5 EB3LYP-0.175 f(+)x with the evaluation indices of R2= 0.732, q2= 0.571, and Qext2= 0.673. The given 2D-QSAR model indicated that the molecular size (EB3LYP) and Fukui index with respect to nucleophilic attack (f(+)) were intrinsic factors influencing Re%. Three degradation pathways were subsequently proposed based on the f(+) distribution. Compared to the 2D-QSAR model, the developed 3D-QSAR model exhibited a better predictive ability, with the evaluation indices of R2= 0.989, q2= 0.696, and SEE= 0.001. The analysis of field contribution rates suggested that electrostatic field (48.2%), hydrophobic field (25.3%), and hydrogen-bond acceptor field (12.7%) were the main factors influencing Re%. These findings generated critical information for evaluating the degradation mechanisms/rules and provided theoretical bases for initially estimating the Re% of sulfonamide antibiotics undergoing FB-activated UHP process.


Assuntos
Peróxido de Hidrogênio , Relação Quantitativa Estrutura-Atividade , Antibacterianos , Peróxido de Carbamida , Carvão Vegetal , Peróxido de Hidrogênio/química , Ferro , Modelos Moleculares , Sulfonamidas
9.
ACS Appl Mater Interfaces ; 13(34): 40590-40601, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415719

RESUMO

Two-dimensional single-atom catalysts (2D SACs) have been widely studied on the nitrogen reduction reaction (NRR). The characteristics of 2D catalysts imply that both sides of the monolayer can be catalytic sites and adsorb electrolyte ions or molecules from solutions. Overstrong adsorption of electrolyte ions or molecules on both sides of the catalyst site will poison the catalyst, while the adsorbate on one side of the catalytic site will modify the activity and selectivity of the other side for NRR. Discovering the influence of adsorption of electrolyte ions or molecules as a functional ligand on catalyst performance on the NRR is crucial to improve NRR efficiency. Here, we report this work using the density functional theory (DFT) method to investigate adsorption of electrolyte ions or molecules as a functional ligand. Among all of the studied 18 functional ligands and 3 transition metals (TMs), the results showed that Ru&F, Ru&COOH, and Mo&H2O combinations were screened as electrocatalysis systems with high activity and selectivity. Particularly, the Mo&H2O combination possesses the highest activity with a low ΔGMAX of 0.44 eV through the distal pathway. The superior catalytic performance of the Mo&H2O combination is mainly attributed to the electron donation from the metal d orbital. Furthermore, the functional ligands can occupy the active sites and block the competing vigorous hydrogen evolution reaction. Our findings offer an effective and practical strategy to design the combination of the catalyst and electrolyte to improve electrocatalytic NRR efficiency.

10.
Phys Chem Chem Phys ; 23(15): 9604-9610, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885103

RESUMO

This work explores the possibility for improving heat transport in a polymeric, electrical insulating material, such as polyethylene, by adding boron nitride nanotubes - a heat superdiffusive material. We use molecular dynamics simulations to study the nanocomposites formed by addition of the nanotubes to both amorphous and crystalline polyethylene, and also investigate the effect of surface functionalization using a silane coupling agent, which, being covalently attached to both the nanofiller and the polymer matrix, facilitates the heat transport between them. Even though transport is shown to deteriorate in each simulation when the coupling agents are added, they are expected to favor the nucleation of the crystalline regions about the nanotubes, thus significantly boosting heat conduction in the material along their direction.

11.
Phys Chem Chem Phys ; 23(7): 4178-4186, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33586741

RESUMO

Designing atomically dispersed metal catalysts for the nitrogen reduction reaction (NRR) is an effective approach to achieve better energy conversion efficiencies. In this study, we designed a series of single molybdenum (Mo) atom-anchored porous two-dimensional Mo porphyrin (2D Mo-Pp) monolayers modified by B, C, O, P and S as efficient NRR catalysts to improve the catalytic performance. We introduced two key parameters, θ (pz orbital filling of heteroatoms) and φ (Bader charge of central Mo atoms). It shows that θ and φ play important roles in nitrogen absorption by analyzing the regression models. In particular, the theoretical results suggested that the 2D Mo-Pp monolayer modified by B has an ultralow limiting potential of 0.35 V and can suppress the hydrogen evolution reaction, making the 2D Mo-Pp monolayer modified by B a promising NRR electrocatalyst with high efficiency and selectivity. This work provides insights into the rational design of the elaborate structure of single-atom catalysts with tunable electrocatalytic activities.

12.
J Chem Phys ; 151(17): 174708, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703489

RESUMO

Thermal transport through model copper-polyethylene interfaces is studied using two-temperature nonequilibrium molecular dynamics. This approach treats electronic and phonon contributions to the thermal transport in the metallic region, but only phonon mediated transport is assumed in the polymer. Results are compared with nonequilibrium molecular dynamics simulations of heat transport in which only phonon contributions are incorporated. The influence of the phase of the polymer component (crystalline, amorphous, and lamella) and, where relevant, its orientation relative to the metallic interface structure is explored. These computational studies suggest that the thermal conductivity of the metal-polymer interface can be more than 40 times greater when the polymer chains of the lamella are oriented perpendicular to the interface than the situation when the interface is formed by an amorphous polymer or a crystalline polymer phase in which the chains orient parallel to the interface. The simulations suggest that the phonon contribution to the thermal conductivity of the copper region can be increased by as much as a factor of three when coupling between the electrons and phonons in the metal region is incorporated. This, combined with the explicit inclusion of the purely electronic component of the thermal transport in the metal region, can lead to a substantial increase in the heat flux promoted by the interface while maintaining a constant temperature drop. These simulation results have important implications for designing materials that have excellent electrical insulation properties but can also be highly effective in heat conduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...